

Dynamic Influences of Optimisation on Emissions

Whittle Consulting Integrated Strategic Planning for the Mining Industry

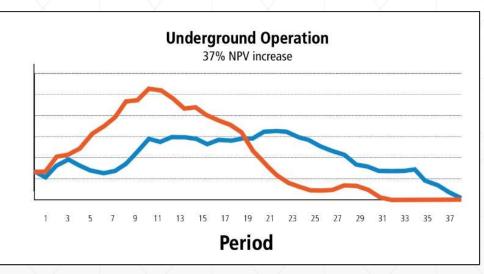
Philip Bangerter & Jason Pan

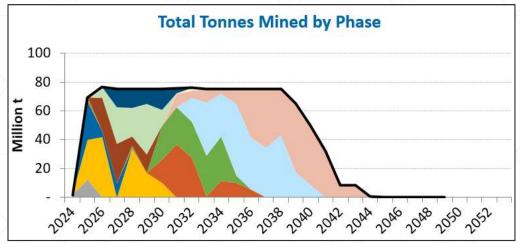
4 Aug 2023 Session 9

Acknowledgements

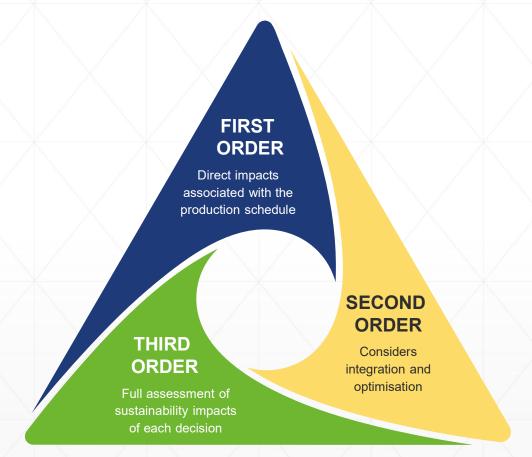
Co-author : Jason Pan, Whittle Consulting Whittle Consulting Pty Ltd Mirco Nolte, Dundee Precious Metals

Ronne Hamerslag, Nordic Iron Ore


Whittle Consulting Integrated Strategic Planning for the Mining Industry



Optimisation in LOM Planning


- Take a mining schedule
- Rearrange using a mathematical Optimiser
- Improve the NPV

But what else? Emissions & other sustainability criteria... Effect on decision-making

Presentation Outline

FIRST ORDER

Effects concerned with assembling capital and operating costs and calculating a netpresent-cost for these

SECOND ORDER

Effects concerned with the orebody as an integrated whole and its optimisation

THIRD ORDER

Effects concerned with environmental and community value or impact

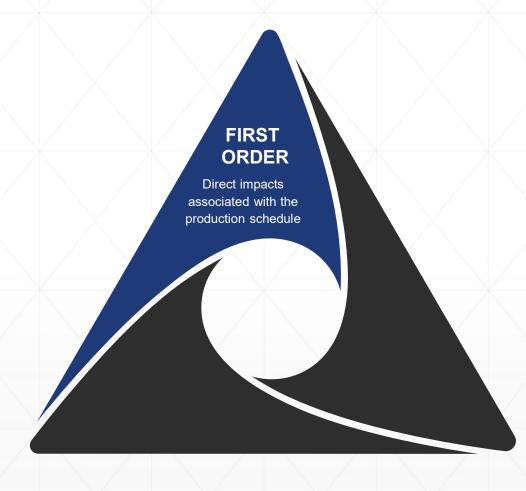
DECISION MAKING How first, second and third-order effects

must influence decisions

Dynamic Influences of Optimisation on Emissions LOM 2023

5

Enterprise Optimization - Carbon

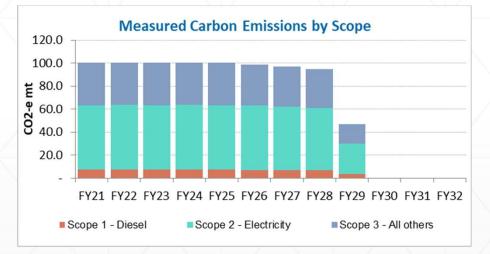

Carbon Emission partial totals - Scope 1,2 and 3		LOM Total	Period 0 FY21	Period 1 FY22	Per
CO ₂ from Mining Diesel	tCO ,-e	65,966	6,500	6,250	2
CO ₂ from Mining Power	tCO -e	236,344	22,534	22,585	22
CO ₂ from Mining Explosives	tCOe	52,712	5,737	5,687	5
CO ₂ from Engine & Hydraulic Oils	tCOe	4,175	411	396	
CO ₂ from Tyres	tCOe	2,139	210	202	
CO ₂ from Mill and other Surface Diesel	tCOe	10,665	1,019	1,019	. 1
CO ₂ from Mill and other Surface Power	tCOe	342,584	32,654	32,9	64
CO ₂ from Plant Grinding Media	tCOe	5,264	502	N.	
CO ₂ from Plant Quick Lime	tCOe	71,168	6,783	6,801	
CO ₂ from Plant Chemical Agents	tCOe	9,515	907	909	1
CO ₂ from cement used in Paste	tCOe	282,856	27,425	26,983	
CO ₂ from concentrate rail to Port for export	tCOe	57,271	4,585	5,569	3
CO ₂ from Gravel	tCOe	30,623	2,925	2,925	1
CO ₂ from Boiler fuel	tCOe	30,221	2,887	2,887	
CO ₂ from misc Scope 3 transport	tCOe	7,397	781	699	
CO ₂ from Power Transmission Losses	tCOe	57,893	5,519	5,550	
Partial tCO2-e total from variable components	tCO , -e	1,266,793	121,379	121,875	-
ex-Port Concentrate Transport - NOT IN SCOPE 3					-
Concentrate - Shipping of Concentrates to Destination #1 Port	tCO , -e	56,453	7,018	5,219	1
Concentrate - Shipping of Concentrates to Destination #2 Port	tCO ,-e	502,615	36,964	49,226	
Concentrate - Rail transport from Destination #1 Port to Smelter	сCO , -е	13,866	1,724	1,282	3
Concentrate - Truck transport from Destination #2 Port to Smelter	tCO , -e	199,692	14,686	19,558	1
ex-Port Transport Emissions (not in Scope 3)	tCO₂-e	772,626	60,391	75,284	
Carbon Emission statistics - Scope 1 to 3 only					1
CO ₂ emission per ore feed tonnes	tCO3-e/mt	0.0550	0.0552	0.0553	
CO ₂ emission per Copper Equivalent in concentrate	tCO₂-e <mark>/E</mark> qCut	2.6383	2.2560	2.3026	A.A.
CO ₂ emission per Gold Equivalent in concentrate	tCO₂+e/EqAu Oz	0.6197	0.6140	0.5317	1
Scope 1 - Primarily Diesel	tCOe	76,631	7,519	7,269	1
Scope 2 - Primarily Electricity	tCOe	578,928	55,188	55,496	3
Scope 3 - All others	tCOe	611,234	58,672	59,110	

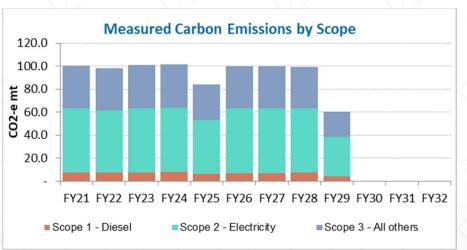
- <u>Scope 1</u> Included from LOM plan.
- <u>Scope 2</u> Included from LOM plan.
- <u>Scope 3</u> Upstream. Included with estimates where LOM is deficient.
- <u>Scope 3</u> Downstream. Included with estimates for transport to customer's gate.

Emissions expressed as tonnes of CO_2 -e; as total by period and as intensity by period.

Scope 3 emissions need not be to LCA standards; merely to allow comparisons between options

First-order Effects

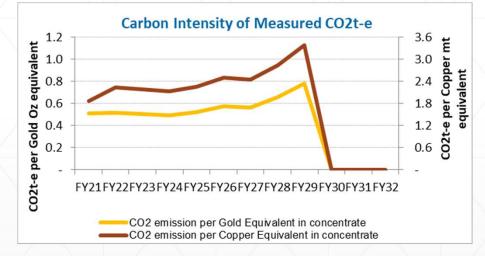

- Capex, Opex & Net Present Costs
- Compare options for their carbon footprint or water/tailings
- Typically: calculating annualised diesel and electrical energy consumptions from production outputs or abatement projects

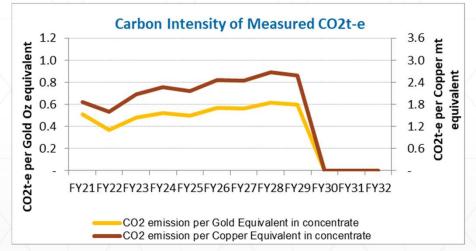

First-order Effects

Case Example - Dundee Precious Metals - Chelopech

Run 30A – LRF replica with ABC

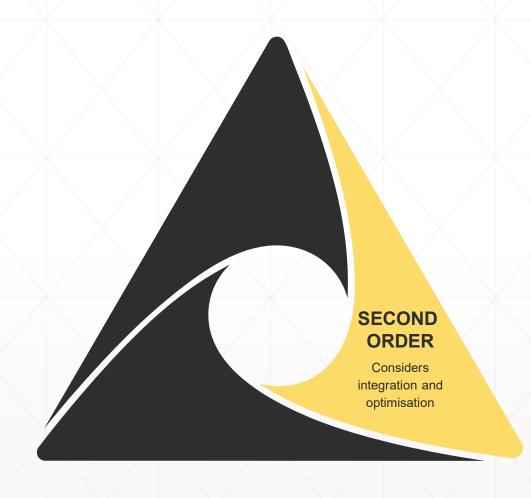
Run 34B - latest 10% case with BMv021


Total emissions comparison of two different mine schedules varying over time


First-order Effects

Case Example - Dundee Precious Metals - Chelopech

Run 30A – LRF replica with ABC



Run 34B – latest 10% case with BMv021

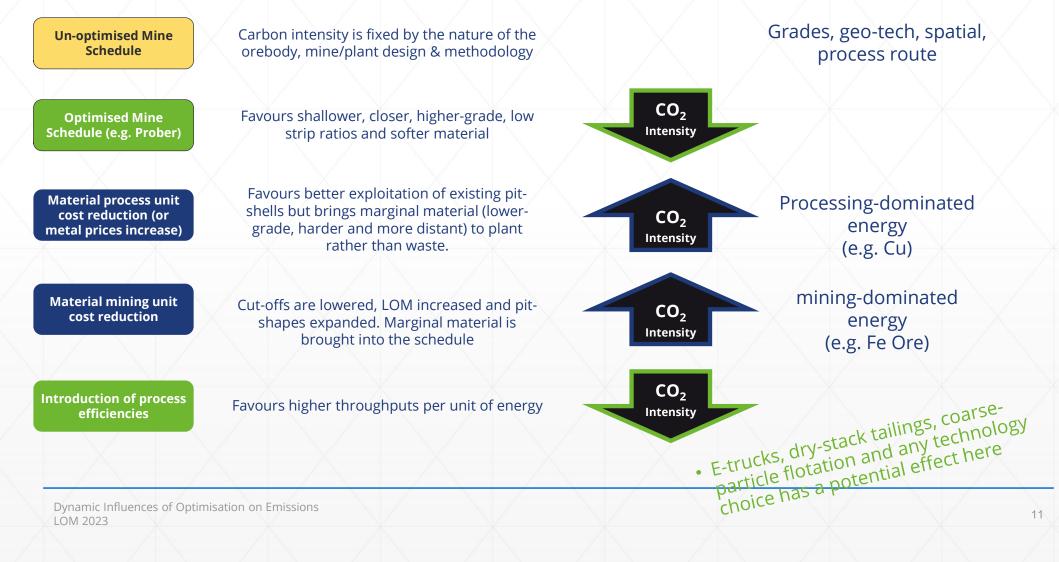
Intensity comparison of two different mine schedules varying over time

Second-order Effects

- The orebody as an integrated whole and its optimisation
- Optimiser enables:

Combination of financial and physicals A new schedule

A new schedule

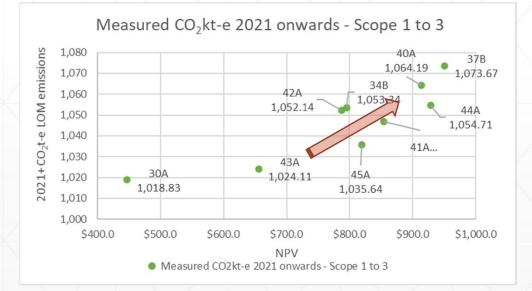

Changed cut-off policy

Revised design of pit shapes

 Project or operational outcomes that prompt a re-optimised configuration. E.g. comparison of electrified trucks

Second-order Effects

The planning processes, optimisation and methodology affects CO₂-e intensity and total output



Second-order Effects

- Plotting NPV of the optimized runs against:
 - LOM Carbon Inventory (t);
 - LOM Carbon Intensity (tCO₂ /oz)

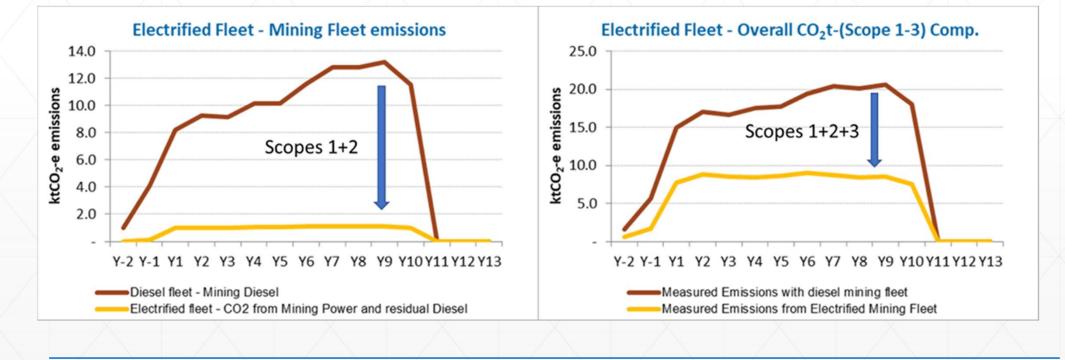
Insight

 For Scope 1,2,3 inventories, CO₂ tracks upwards with NPV, but Intensity trends downwards

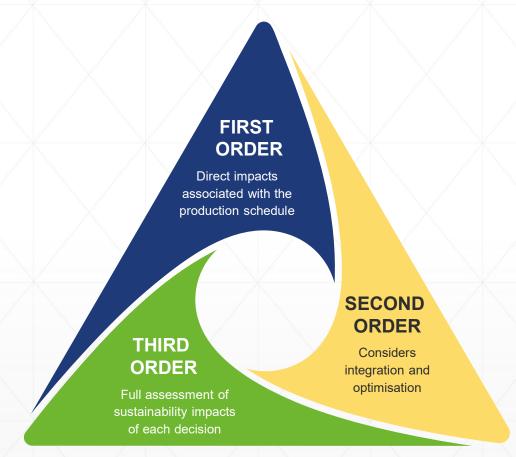
Third-order Effects

- Environmental and community value or impact
- Evolving full assessment of sustainability impacts of each decision (case by case)
- Holistic view of Carbon Impact for each case e.g. as the NPV improves, does the carbon (or energy, land or water) impact rise or fall?

 Example: Hydrogen or Electric Truck solution as diesel abatement needs to consider the associated water, land and energy intensity impacts and social opportunity aligned with any sustainable Mining Plan objectives



Decisions - Boundaries


- Plotting NPV of the optimized runs against:
 - LOM Carbon Inventory (t);
 - LOM Carbon Intensity (tCO2/oz)

Insight

• As on-site carbon emissions reduce, the off-site emissions become more prominent

Recap

FIRST ORDER

Effects concerned with assembling capital and operating costs and calculating a netpresent-cost for these

SECOND ORDER

Effects concerned with the orebody as an integrated whole and its optimisation

THIRD ORDER

Effects concerned with environmental and community value or impact

DECISION MAKING How first, second and third-order effects

must influence decisions

Final Thoughts

Other examples from recent studies

- Fleet electrification with trolley assist
- In-pit crush and convey vs truck haulage
- Renewables penetration vs traditional diesel at remote sites
- Dry-stack tailings vs conventional tailings storage

The traditional NPVdominated assessment has become a multicriteria evaluation as well. A handful are dominant in the strategic sense:

- Carbon
- Water
- Tailings
- Employment

Which are the win-win-win vs trade-offs? Have you considered the 1st, 2nd & 3rd-order effects?

Thankyou

Philip Bangerter, Orchardman Pty Ltd

E: philip@bangerter.net.au T: +61 417 764 715

Jason Pan, Whittle Consulting Pty Ltd

E: Jason@whittleconsulting.com.au T: +61 419 584 431